
Mauro Anselmino: The transverse spin structure of the nucleon - III

About SSA in hadronic interactions 

TMDs and SSA in inclusive hadronic 
interactions
TMDs and SSA in Drell-Yan processes

A fundamental QCD test 

Drell-Yan processes, the transversity golden 
channel 

Alternative ways to transversity 



x                 

-2
10

-1
10

  
  

  
  

  
  

  
  

 
S

iv
A

-0.1

0

0.1

x                  

-2
10

-1
10

COMPASS 2007 proton data (part.)
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Sivers asymmetry: COMPASS vs HERMES 
(F. Bradamante talk at Beijing workshop 2008) 



p p→ π0 X (collinear configurations)

factorization theorem 

TMDs and SSAs in hadronic collisions                

dσ =
∑

a,b,c,d=q,q̄,g

fa/p(xa)⊗ fb/p(xb)⊗ dσ̂ab→cd ⊗Dπ/c(z)

PDF FF 
pQCD elementary 

interactions

a
b

c
X

X

σ̂



 PHENIX data on 
unpolarized cross 

section 

p p→ π XRHIC,
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FIG. 3: Top) Comparison of invariant cross sections for π−, K+, p̄ and p at y=2.95 and NLO calculations with factorization
and renormalization scales set equal to pT . The mKKP set of fragmentation functions (solid red line on-line) produce the best
agreement with the π− and K+ data. The p and p̄ are compared with the calculation using the AKK set divided by 2 (dashed
red line in on-line version), see text for details. Bottom) Relative differences between data and calculations. The top smooth
curves show the effect of setting µ = 2pT and the bottom curves µ = 1/2pT . For the baryons the (red) filled triangles show p
data vs the AKK/2 set.

momentum but deteriorates at higher momenta.
An updated version of FFs that we refer to as the

“Albino, Kniehl and Kramer” (AKK) set has been ex-
tracted from more data made available recently [23]. It
reproduces well the p + p̄ distributions measured at mid-
rapidity by the STAR collaboration [24]. At high rapid-
ity, the contribution from gluons fragmenting into p or p̄
is dominant in this new set of FFs (≥ 80% for pT < 5
GeV/c [18]), and the calculated cross sections for both
particles consequently have nearly the same magnitude.
We thus compare the measured cross sections for p and
p̄ to the NLO calculation using the AKK FFs divided by
2 in the right-most panel of Fig. 3. The calculation is
close to the measured p cross section but it is almost an
order of magnitude higher than the measured p̄ distribu-
tion. We conclude that the AKK FFs cannot be used to
describe baryon yields at high rapidity because they fail
to reproduce the measured abundance of p̄ with respect
to p. We have ruled out the use of the standard KKP
FFs because they produce p + p̄ cross sections that are
smaller by a factor of ∼ 10 compared to the measurement
(not shown).

In summary, unbiased invariant cross sections of identi-

fied charged particles as function of pT were measured at
high rapidity in p+p collisions at

√
s = 200 GeV. NLO

pQCD calculations reproduce reasonably well the pro-
duced particle (pions and kaons) distributions but p and
p̄ cannot simultaneously be described well by any of the
available FFs. These results may show a limitation of
the factorized description of p+p cross sections, perhaps
because it does not include the effects of baryon number
transport that, as the data suggest, may extend to high
pT . These measurements bring additional insight into
the hadron-hadron interaction and its description in the
context of QCD; they are as well instrumental in con-
straining phenomenological descriptions of that system.

We thank Werner Vogelsang for providing us with the
NLO pQCD calculations shown in this letter as well as
many fruitful discussions during the preparation of this
manuscript. This work was supported by the Office of
Nuclear Physics of the U.S. Department of Energy, the
Danish Natural Science Research Council, the Research
Council of Norway, the Polish State Committee for Sci-
entific Research (KBN) and the Romanian Ministry of
Research.

Phys. Rev. Lett. 98, 252001 (2007) 

BRAHMS, proton-proton at 200 GeV 



good pQCD description of data at 200 GeV, at all 
rapidities, down to pT of 1-2 GeV/c 

Polarization-averaged cross sections at √s=200 GeV
(talk of C. Aidala at Transversity 2008, May 2008, Ferrara)



STAR-RHIC  √s = 200 GeV    1.2 < pT < 2.8   

but problems with SSAs ...



Unifying 62.4 and 200 GeV, BRAHMS + E704 
(C. Aidala talk at transversity 2008, Ferrara)



Unifying 62.4 and 200 GeV, BRAHMS + E704 
(C. Aidala talk at transversity 2008, Ferrara)

E704 data – all pT (small stars); pT>0.7 GeV/c (large stars)



SSA in hadronic processes: intrinsic k┴, factorization?

Two main different (?) approaches

Generalization of collinear scheme 
(assuming factorization)

first proposed by Field-Feynman

dσ =
∑

a,b,c=q,q̄,g

fa/p(xa,k⊥a)⊗ fb/p(xb,k⊥b)⊗ dσ̂ab→cd(k⊥a,k⊥b)⊗Dπ/c(z,p⊥π)

a b

cX

X

σ̂



dσ↑ − dσ↑ =
∑

a,b,c

{
∆Nfa/p↑(k⊥)⊗ fb/p ⊗ dσ̂(k⊥)⊗Dπ/c

+ ha/p
1 ⊗ fb/p ⊗ d∆σ̂(k⊥)⊗∆NDπ/c↑(k⊥)

+ ha/p
1 ⊗∆Nfb↑/p(k⊥)⊗ d∆′σ̂(k⊥)⊗Dπ/c

}

(1)
(2)
(3)

partially suppressed 
by phases

Possible sources of SSA, simple approach 
(one k┴ at a time) 



dσ(A,SA)+(B,SB)→C+X =
∑

ρa/A,SA

λa,λ′
a

f̂a/A,SA
(xa,k⊥a)⊗ ρb/B,SB

λb,λ′
b

f̂b/B,SB
(xb,k⊥b)

⊗ M̂λc,λd;λa,λb
M̂∗

λ′
c,λd;λ′

a,λ′
b
(k⊥a,k⊥b) D̂

λC ,λ C

λc,λ′
c

(z,k⊥C)

d∆σp,S+p→π+X =
∑

q

∆Nfq/p↑(xa,k⊥a)⊗ fb/p(xb,k⊥b)

⊗ dσ̂ab→cd(k⊥a,k⊥b)⊗Dπ/c(z,p⊥π)

General formalism with helicity amplitudes

non planar process, 
plenty of phases

main (maybe) contribution to SSA from Sivers effect

M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, 
PR D71, 014002 (2005), PR D73, 014020 (2006)



M ∝ ū(p3, λ3) γµ u(p1, λ1) ū(p4, λ4) γµ u(p2, λ2)

pi = (p0
i , pi)

u(pi, λi) =
√

p0
i

(
1
λi

)
χλi

(p̂i) p̂i = (sin θi cos φi, sin θi sin φi, cos θi)

χ+(p̂i) =




cos(θi/2) e−iΦi/2

sin(θi/2) eiΦi/2



 χ−(p̂i) =




− sin(θi/2) e−iΦi/2

cos(θi/2) eiΦi/2





Computation of helicity amplitudes

if scattering is not planar all phases are different and remain in the 
amplitudes; they suppress the results when integrating over k┴ 

Dirac-Pauli helicity spinors



izations. The way the hadron spin is transferred to the partons can be formally described,

in general, by bilinear combinations of the helicity amplitudes for the process A → a + X

(distribution amplitudes) [2, 9]. Therefore, one could equally well interpret Eq. (1) either

in terms of parton polarizations or in terms of the distribution amplitudes. We follow here

the former approach, which is somewhat more direct. However, the latter approach offers

a deeper understanding of some of the basic properties of our factorized scheme (e.g. the

parity properties) and allows a direct comparison with other formalims used to describe the

same spin effects. In Appendix B we give the full correspondence between parton polariza-

tions and the distribution amplitudes, and in Appendix C we derive the explicit relations

between our formalism and that of the Amsterdam group [10].

A. Quark polarizations

The helicity density matrix of quark a can be written in terms of the quark polarization

vector components, P a = (P a
x , P a

y , P a
z ) = (P a

T cosφsa, P
a
T sin φsa, P

a
L), as

ρa/A,SA

λa,λ′
a

=







ρa
++ ρa

+−

ρa
−+ ρa

−−







A,SA

=
1

2







1 + P a
z P a

x − iP a
y

P a
x + iP a

y 1 − P a
z







A,SA

=
1

2







1 + P a
L P a

T e−iφsa

P a
T eiφsa 1 − P a

L







A,SA

, (7)

where, as explained above, the x, y and z-directions are those of the helicity frame of parton

a. Eq. (7) satisfies the well known general properties:

ρa
++ + ρa

−− = 1 (8)

ρa
++ − ρa

−− = P a
z = P a

L (9)

2 Reρa
−+ = 2 Reρa

+− = P a
x = P a

T cosφsa (10)

2 Imρa
−+ = −2 Imρa

+− = P a
y = P a

T sin φsa . (11)

When performing the sum over the helicity indices λa, λ
′
a and λb, λ

′
b in Eq. (1), one obtains

products of terms of the form

(P a
j f̂a/A,SA

) = f̂a
sj/SA

− f̂a
−sj/SA

≡ ∆f̂a
sj/SA

, (12)

where j = x, y, z. Similarly for parton b inside hadron B. We use the notations:

(P a
j f̂a/A,SY

) = ∆f̂a
sj/SY

= f̂a
sj/↑ − f̂a

−sj/↑ ≡ ∆f̂a
sj/↑(xa, k⊥a) (13)

(P a
j f̂a/A,SZ

) = ∆f̂a
sj/SZ

= f̂a
sj/+ − f̂a

−sj/+ ≡ ∆f̂a
sj/+(xa, k⊥a) (14)

(f̂a/A,SY
) = f̂a/A(xa, k⊥a) +

1

2
∆f̂a/SY

(xa, k⊥a) . (15)

6

 



The relations between the F λa,λ′
a

λA,λ′
A

inclusive cross sections and the Amsterdam group dis-

tribution functions can straightforwardly be derived by comparing Eqs. (C2), (C3) and (C4)

with Eqs. (B12), (B13) and (B19) respectively, obtaining:

f1(xa, k⊥a) = F++
++ + F++

−− = f̂a/A (C6)
k⊥a

M
f⊥

1T (xa, k⊥a) = −2 ImF++
+− (C7)

g1L(xa, k⊥a) = F++
++ − F++

−− (C8)
k⊥a

M
g⊥
1T (xa, k⊥a) = 2 ReF++

+− (C9)

k⊥a

M
h⊥

1L(xa, k⊥a) = 2 ReF+−
++ (C10)

k⊥a

M
h⊥

1 (xa, k⊥a) = 2 ImF+−
++ (C11)

h1(xa, k⊥a) = F+−
+− (C12)

(

k⊥a

M

)2

h⊥
1T (xa, k⊥a) = 2 F−+

+− . (C13)

Notice that, according to the most general forward behaviour of helicity amplitudes (see,

e.g., Eq. (4.3.1) on page 79 of Ref. [4]), one should have the minimal requirement:

F λa,λ′
a

λA,λ′
A
(xa, k⊥a = 0) ∼ (k⊥a)

|λA−λa+λ′
A−λ′

a| , (C14)

which is explicit in the above equations. The proton mass M is assumed in Eq. (C1) as a

reasonable scale for the intrinsic motion k⊥.

Combining Eqs. (C6)–(C13) with Eqs. (B20)–(B27) one can obtain the relationships

between the Amsterdam functions and the quark polarizations. Using Eqs. (C7), (C10),

(C11), (C8) and (C9) respectively into Eqs. (B21), (B22), (B24), (B26) and (B27), yields:

f̂a/A,ST
− f̂a/A,−ST

= ∆f̂a/ST
(xa, k⊥a) = −2

k⊥a

M
sin(φSA

− φa) f⊥
1T (xa, k⊥a) (C15)

P a
x f̂a/A,SL

= ∆f̂sx/+(xa, k⊥a) =
k⊥a

M
h⊥

1L(xa, k⊥a) (C16)

P a
y f̂a/A,SL

= P a
y f̂a/A = ∆f̂sy/A(xa, k⊥a) = −

k⊥a

M
h⊥

1 (xa, k⊥a) (C17)

P a
z f̂a/A,SL

= ∆f̂sz/+(xa, k⊥a) = g1L(xa, k⊥a) (C18)

P a
z f̂a/A,ST

= ∆f̂sz/ST
(xa, k⊥a) =

k⊥a

M
cos(φSA

− φa) g⊥
1T (xa, k⊥a) , (C19)

which shows that the functions f⊥
1T , h⊥

1L, h⊥
1 , g1L and g⊥

1T have a direct physical interpretation

in terms of corresponding polarized quark distributions.

42

 
Instead, insertion of Eqs. (C11)–(C13) and (C5) into Eqs. (B23) and (B25) gives

P a
x f̂a/A,ST

= ∆f̂sx/ST
(xa, k⊥a)

=

[

h1T (xa, k⊥a) +
k2
⊥a

M2
h⊥

1T (xa, k⊥a)

]

cos(φSA
− φa) (C20)

P a
y f̂a/A,ST

= ∆f̂sy/ST
(xa, k⊥a)

= −
k⊥a

M
h⊥

1 (xa, k⊥a) + h1T (xa, k⊥a) sin(φSA
− φa) , (C21)

which shows that h1T and h⊥
1T are combinations of quark polarized distributions.

2. Gluon distribution functions

In Ref. [14] Mulders and Rodriguez discussed the twist-two transverse momentum de-

pendent gluon distribution functions for spin-1/2 hadrons. Their notation is different from

ours, and it is worth mentioning the relations which link the two different formalisms.

Naming conventions in Ref. [14] are set as follows: G and ∆G indicate gluon distribution

functions which are diagonal in the gluon helicities, i.e. correspond to either unpolarized

(G) or circularly polarized (∆G) gluons. H and ∆H indicate gluon distribution functions

which correspond to linearly polarized gluons in either unpolarized or polarized hadrons

respectively. As for the quark distribution functions, a T or L subscript indicates that

the parent hadron is either transversely or longitudinally polarized, and a ⊥ superscript

shows an explicit dependence of the distribution function on the gluon intrinsic transverse

momentum.

Indeed, eight such functions exist:

• G is the usual distribution function of unpolarized gluons inside unpolarized hadrons,

corresponding to f̂g/A = F++
++ + F++

−− , Eq. (B41);

• ∆GL is the distribution function of circularly polarized gluons inside a longitudinally

polarized hadron A, corresponding to ∆f̂ g
sz/+ = F++

++ − F++
−− , Eqs. (B47) and (B54);

• GT is the distribution function of unpolarized gluons inside a transversely polar-

ized hadron, i.e. the gluon Sivers function, corresponding to ∆N f̂g/A↑ = 4 ImF++
+− ,

Eq. (B36);

43

 



8 leading-twist spin-k┴ dependent distribution functions 

Courtesy of Aram Kotzinian



E704 data STAR data

U. D’Alesio, F. Murgia

fit prediction



d∆σ ∝
∑

a,b,c

Ta(k1, k2,S⊥)⊗ fb/B(xb)⊗Hab→c(k1, k2)⊗Dh/c(z)

Higher-twist partonic correlations    
(Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan) 

twist-3 functions hard interactions

(A↑B → h X)contribution to SSA  

“collinear expansion” at order ki┴



fits of E704 and STAR data 
Kouvaris, Qiu, Vogelsang, Yuan



d∆σ ∝
∑

a,b,c

f⊥(1)
1T (x1)⊗ fb/H2(x2)⊗ dσ̂[a]b→cd ⊗Dh1/c(z1) Dh2/d(z2)

H1H2 → h1h2XGluonic pole cross sections and SSA in  
Bacchetta, Bomhof, Mulders, Pijlman; Vogelsang, Yuan; Teryaev 

gluonic pole cross sections take into account gauge links 

dσ̂[a]b→cd =
∑

D

C [D]
G dσ̂D

ab→cd C [D]
G

Diagram dependent Gauge 
link Colour factors 

factorization ? 

Sivers contribution to SSA 

(breaking of factorization?)



dσ̂[!]q→!q = dσ̂!q→!q dσ̂[q]q̄→!+!− = −dσ̂qq̄→!+!−

to be compared with the usual cross section 

Gluonic pole cross sections and SSA in  H1H2 → h1h2X



_

•  power-suppressed effects in QCD much richer than 

  mass terms   (Efremov,Teryaev; Qiu,Sterman; Eguchi, Koike, Tanaka)

Phase

Collinear factorization in terms of “quark-gluon correlation”:

x
1

x
2

x
2
-x
1

TF

From W.  Vogelsang talk at Beijing 2008



+ +

_+

•  phase in hard scattering •  phase in distribution fct.

   (but where exactly?)

•  hel. flip because of qgq •  hel. flip because of OAM

•  factorization for pp!"X

  established
•  factorization for pp!"X

  assumed          (k# ~ p# ?)

•  phenomenology •  phenomenology

Anselmino, Boglione, 

D’Alesio, Leader, Melis, Murgia, …
Qiu, Sterman

Kouvaris, Qiu, WV, Yuan

               



Major advance in theory:

•  Crucial role of gauge-links in TMDs
Brodsky, Hwang, Schmidt; 

Collins; Belitsky, Ji, Yuan; 

Boer, Mulders, Pijlman

•  profound implication: 

           process-dependece of Sivers functions

•  hugely important in QCD -- tests a lot of what we 

  know about description of hard processes

DIS: “attractive” DY: “repulsive”



Simple QED
example:

DIS: attractive Drell-Yan: repulsive
Same in QCD:

As a result:

Non-universality of Sivers Asymmetries:
Unique Prediction of Gauge Theory !



dσD−Y =
∑

a

fq(x1,k⊥1;Q2)⊗ fq̄(x2,k⊥2;Q2) dσ̂qq̄→!+!−

p p

Q2 = M2

qT

qL

l+

l–

TMDs and SSAs in Drell-Yan  processes               

factorization holds, two scales, M2, and

3 planes:  

no fragmentation process



λ = 1 µ = ν = 0

1
σ

dσ

dΩ
=

3
4π

1
λ + 3

(
1 + λ cos2 θ + µ sin 2θ cos φ +

ν

2
sin2 θ cos 2φ

)

Unpolarized cross section already very interesting

Collins-Soper frame 

Transversity 08, 28th-31st May 2008, Ferrara

S.Melis

Collins Soper frame

Zcs = 1√
M2+q2

T

(qL, 0, 0, q0)

Xcs = − 1√
M2+q2

T

(
q0qT

M , M2+q2
T

M2 cosφγ , M2+q2
T

M2 sinφγ , q0

)

Y cs = − (0,− sinφγ , cosφγ , 0)

36

   

naive collinear parton model:



!"

!"#$%&$'()*$+&,-./+-0)/-1'.&-'&2-1'3-',)#",&!+"**34$'

56%.7&8"97&!&:;&<=;>;?&;@&

!# $# $%%&'(%)*+,%-&.,%/0)*% #% # &'(
!

" # $µµ πλ µ ν

E615  Data 252 GeV !- + W

λ λ λ

µ µ µ

ν ν ν

123+456 7"µµ $π 23+4567
!
#

(Jen-Chieh Peng talk at transversity 2008, Ferrara)

λ != 1 µ, ν != 0 1− λ− 2ν != 0



!"

#$%&'()*+,-.),/&.,0$*,$*1233*4546457*+)8''9:($

!!"!#$%&#!"&#'()**+,$%#-./0#-121*$(#$%34*$(#&1-5(16451/%-7#
8./4*&#6)#$%$*9-)&#5/35.)(#:/(#6)55)(#;/%-5($1%5-#/%#<=7#

!"#$%&%'(")

!"
#$
%&
%'
("
)

!"#$%&%'(")!"
#$
%&
%'
("
)

!"#$%&'()*

Angular Distribution in E866 p+p/p+d Drell-Yan

PRL 99 (2007) 082301

p p
p d



dσ ∝ dσ0 +
∑

q

h⊥1q(x1, k⊥)⊗ h⊥1q̄(x2, k⊥)⊗ (dσ̂↑↑ − dσ̂↑↓)

sin2 θ cos 2φ1 + cos2 θ

TMDs help: for example, the cos 2φ term can be 
originated by the Boer-Mulders effect 

Polarized D-Y processes with intrinsic k┴ have a 
rich structure, similar to SIDIS 

SSA in D-Y has a contribution from the coupling 
of the transversity distribution to B-M function 

dσ↑ − dσ↓ ∝
∑

q

h1q(x1)⊗ h⊥1q̄(x2, k⊥)⊗ (dσ̂↑↑ − dσ̂↑↓)

cos 2φ

fq,sq/p(x,k⊥) =
1
2

fq/p(x, k⊥)− k⊥
2M

h⊥1q(x, k⊥) sq · (p̂× k̂⊥)B-M



!"

!"#$%&#'()*(+*,(-$./012-$3*+0)&#'()3*+$(4*

562*7$-11.8%)

9,:*;<%)=>*;:*?0>*,.@:*/%*%)2*A:*B&<4'2#>*

%$C'DEFGFH:IJKLM

N'#*#(*#<-*562*7$-11.8%)*2%#%

B%#'3+O*#<-*5(3'#'D'#O*P(0)2



dσ↑ − dσ↓ ∝
∑

q

∆Nfq/p(x1, k⊥)⊗ fq̄/p(x2)⊗ dσ̂

q = u, ū, d, d̄, s, s̄

A
sin(φS−φγ)
N ≡

2
∫ 2π
0 dφγ [dσ↑ − dσ↓] sin(φS − φγ)

∫ 2π
0 dφγ [dσ↑ + dσ↓]

Sivers effect in D-Y processes

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓
∑

q

e2
q

∫
d2k⊥q d2k⊥q̄ δ2(k⊥q + k⊥q̄ − qT ) ∆Nfq/p↑(xq,k⊥) fq̄/p↑(xq̄,k⊥q̄)

2
∑

q

e2
q

∫
d2k⊥q d2k⊥q̄ δ2(k⊥q + k⊥q̄ − qT ) fq/p↑(xq,k⊥) fq̄/p↑(xq̄,k⊥q̄)

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     

(p-p c.m. frame) 
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Figure 9: The single spin asymmetries A
sin(φS−φγ)
N for the Drell-Yan process

p↑p → µ+µ− + X at RHIC, as function of xF = xa − xb, averaged over the
invariant mass range 4 < M < 9, rapidity 0 < y < 3 and transverse momentum
0 < qT < 1 GeV/c, for

√
s = 200 GeV.
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Figure 10: The single spin asymmetries A
sin(φS−φγ)
N for the Drell-Yan process

p↑p → µ+µ−+ X at RHIC, as function of M , averaged over rapidity 0 < y < 3
and transverse momentum 0 < qT < 1 GeV/c, for

√
s = 200 GeV.
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Predictions for AN at RHIC (S. Melis)
Sivers functions as extracted by

M.A., M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin and C. Türk     
from SIDIS data, with opposite sign 
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Figure 1: The single spin asymmetries A
sin(φS−φγ)
N for the Drell-Yan process

πp → µ+µ−+ X at COMPASS, as function of xF = xa − xb, averaged over the
invariant mass range 4 < M < 9 and transverse momentum 0 < qT < 1 GeV/c,
for a pion beam energy of 160 GeV/c.
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Figure 2: The single spin asymmetries A
sin(φS−φγ)
N for the Drell-Yan process

πp → µ+µ− + X at COMPASS, as function of xb, averaged over the invariant
mass range 4 < M < 9, 0.2 < xF < 0.5 and transverse momentum 0 < qT < 1
GeV/c, for a pion beam energy of 160 GeV/c. MRSS92 pion pdf
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Figure 3: The single spin asymmetries A
sin(φS−φγ)
N for the Drell-Yan process

πp → µ+µ− + X at COMPASS, as function of xb, averaged over the invariant
mass range 4 < M < 9, 0.2 < xF < 0.5 and transverse momentum 0 < qT < 1
GeV/c, for a pion beam energy of 160 GeV/c. GRVPI pion pdf
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Figure 6: The single spin asymmetries A
sin(φS−φγ)
N for the Drell-Yan process

p↑p̄ → µ+µ− + X at PAX, as function of xF = xa − xb, averaged over the
invariant mass range 4 < M < 6, rapidity |y| < 1 and transverse momentum
0 < qT < 1 GeV/c, for

√
s = 14 GeV.

-0.2

-0.1

 0

 2  4  6  8

A
N

s
in

(!
S
-!
")

M

PAX: p
#
p
$

%s=14.14 GeV

|y|<1  

Figure 7: The single spin asymmetries A
sin(φS−φγ)
N for the Drell-Yan process

p↑p̄ → µ+µ− + X at PAX, as function of M averaged over the rapidity range
|y| < 1 and transverse momentum 0 < qT < 1 GeV/c, for

√
s = 14 GeV.
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Possible direct access to transversity: Drell-Yan processes 
p p→ !+!−, π p→ !+!−, p p̄→ !+!−



d2σ

dM2 dxF
=

4πα2

9M2s

1
x1 + x2

∑

q

e2
q

[
q(x1, Q

2) q̄(x2, Q
2) + q̄(x1, Q

2) q(x2, Q
2)

]

xF = x1 − x2 x1 x2 = M2/s ≡ τ xF = 2qL/
√

s

Simple partonic cross section at collinear level

p p

Q2 = M2

qT

qL

l+

l–

τrange of x1, x2 explored depends on 



âT T =
dσ̂↑↑ − dσ̂↑↓

dσ̂↑↑ + dσ̂↑↓ =
sin2 θ

1 + cos2 θ
cos(2φ)

AT T =
dσ↑↑ − dσ↑↓

dσ↑↑ + dσ↑↓ = âT T

∑
q e2

q [h1q(x1) h1q̄(x2) + h1q̄(x1) h1q(x2)]∑
q e2

q [q(x1) q̄(x2) + q̄(x1) q(x2)]

Direct access to transversity from double 
transverse spin asymmetry

Transversity 08, 28th-31st May 2008, Ferrara

S.Melis

Collins Soper frame

Zcs = 1√
M2+q2

T

(qL, 0, 0, q0)

Xcs = − 1√
M2+q2

T

(
q0qT

M , M2+q2
T

M2 cosφγ , M2+q2
T

M2 sinφγ , q0

)

Y cs = − (0,− sinφγ , cosφγ , 0)
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τ ≤ 2 · 10−3

√
s = 200 GeV M2 ≤ 100 GeVRHIC energies:    

small x1 and/or x2

h1q (x, Q2) evolution much slower than
Δq(x, Q2) and q(x, Q2) at small x 

ATT at RHIC is very small
smaller s would help   Martin, Schäfer, Stratmann, Vogelsang

 Barone, Calarco, Drago

ATT for Drell-Yan 
processes at RHIC

upgrades in 
luminosity 
expected 



AT T =
dσ↑↑ − dσ↑↓

dσ↑↑ + dσ↑↓ = âT T

∑
q e2

q [h1q(x1) h1q(x2) + h1q̄(x1) h1q̄(x2)]∑
q e2

q [q(x1) q(x2) + q̄(x1) q̄(x2)]
" âT T

h1u(x1) h1u(x2)
u(x1)u(x2)

s = 30− 210 GeV2 M2 ≥ 2 GeV2GSI energies:    
large x1,x2

one measures h1 in the 
quark valence region: ATT is 

estimated to be large, 
between 0.2 and 0.4 

PAX proposal: hep-ex/0505054

 from at GSIp↑p̄↑ → !+!−Xh1



H. Shimizu, G. Sterman,            
W. Vogelsang and H. Yokoya

M. Guzzi,V. Barone,   
A. Cafarella, C. Corianò 

and P.G. Ratcliffe 

results for 
ATT stable 
under QCD 
corrections 



W (θp, φp) =
1
4π

[1 + α(Pz cos θp + Px sin θp cos φp + Py sin θp sinφp)]

=
1
4π

[1 + P · p̂] α = 0.642± 0.013

Some alternative accesses to transversity
Inclusive Λ production and measure of Λ polarization

COMPASS analysis 
in progress

∆T D = DΛ↑

q↑ −DΛ↓

q↑need to know transverse fragmentation function

the Λ polarization vector measured  from the proton angular 
distribution in the Λ → πp decay in the Λ helicity rest frame

X

pl



P [0SN ]
N =

2(1− y)
1 + (1− y)2

∑
q e2

q h1q(x) ∆T DΛ/q(z)
∑

q e2
q q(x) DΛ/q(z)

P [0SN ]
N ! 2(1− y)

1 + (1− y)2
4h1u + h1d

4u + d

∆T DΛ/u

DΛ/u

PN (Λ) ∼
∑

abc

fa/p ⊗ h1b ⊗ d∆σab→c··· ⊗∆T DΛ/c

p p↑ → Λ↑ Xsimilar result in 

 collinear configuration, 
no need for intrinsic k┴

∆T D = DΛ↑

q↑ −DΛ↓

q↑



Two hadron production in SIDIS            
Di-hadron Fragmentation Function (DiFF) 

Chiral odd fragmentation function of a transversely polarized 
quark into two hadrons (interference between s and p wave)



Two hadron production in SIDIS            
Di-hadron Fragmentation Function (DiFF) 

Chiral odd fragmentation function of a transversely polarized 
quark into two hadrons (interference between s and p wave)

Bacchetta, Boer, Jaffe, Jakob, Radici … 



AUT =
dσ↑ − dσ↓

dσ↑ + dσ↓
∝ sin(ΦR⊥ + ΦS)

∑
q e2

q h1q HDiFF
1∑

q e2
q f1q D



Not all spin problems have been solved, but 
enormous progress has been made

The spin-orbiting structure of quarks in nucleons 
begins to emerge 

Theory. Unintegrated PDF and FF play a crucial 
role; their Q2 evolution is needed. Factorization 

and universality issues must be clarified, …

Experiment. New data from COMPASS (proton 
target), JLab, RHIC, and GSI. D-Y processes very 

promising …     


